The Role of Micro Gas Turbines in Energy Transition

Author:

Banihabib ReyhanehORCID,Assadi MohsenORCID

Abstract

In the progressively rising decentralized energy market, micro gas turbines (MGT) are seen with great potential owing to their low emissions, fuel flexibility, and low maintenance. The current transformation in the landscape of electricity supply with an increasing share of fluctuant renewable energy resources and increasing complexity requires a reliable and energy-efficient power generation source to support the grid. In this scenario, small-scale power plants that are constructed based on micro gas turbines with up to 250 kW power range can play a substantial role in meeting the challenges of the modern electricity grid. Micro gas turbines provide a reliable and cost-effective power source with a quick load-following ability which can respond to demand peaks and compensate for intermittent renewable sources when they are not available. MGT units can work as a system together with renewables, or function as a stand-alone unit in off-grid operations. The features of micro gas turbines are compatible with the energy transition that is the carbon-free modern energy grid. The technology underlying MGTs offer hybridization with renewable energy sources, flexibility in operations and type of fuel, and promising low emission solutions that align with environmental concerns. However, there is a continuous need to improve energy efficiency with a pressing urge for reducing emissions. This paper provides a review of micro gas turbines’ characteristics which promote their role in future power and heat generation systems. A brief overview of the challenges to improving operational flexibility, reliability, and availability of MGTs while maintaining low environmental impact and lowering the costs is presented. A model for an active monitoring and control system of the micro gas turbines is proposed which could improve the reliability of MGT operation in the grid by means of AI methods.

Funder

European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference66 articles.

1. Locational Aspects of Distributed Generation;Alvarado;IEEE Power Eng. Soc. Winter Meeting. Conf. Proc.,2001

2. Silvestri, A., Berizzi, A., and Milano, P. Distributed Generation Planning Using Genetic Algorithms. PowerTech Budapest 99. Abstract Records, 1998.

3. Barker, P.P., and de Mello, R.W. Determining the Impact of Distributed Generation on Power Systems: Part 1—Radial Distribution Systems. Proceedings of the 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134).

4. Dispersed generation impact on distribution networks;Generation;IEEE Comput. Appl. Power,1999

5. Ilic, M. The information technology (IT) role in future energy generation, distribution, and consumption. The Power Engineering Society Winter Meeting IEEE, 2001.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3