Development of a Method for Sizing a Hybrid Battery Energy Storage System for Application in AC Microgrid

Author:

Costa Tatiane12ORCID,Arcanjo Ayrlw1ORCID,Vasconcelos Andrea13,Silva Washington13,Azevedo Claudia1,Pereira Alex4ORCID,Jatobá Eduardo4ORCID,Filho José Bione4,Barreto Elisabete4ORCID,Villalva Marcelo Gradella2,Marinho Manoel3ORCID

Affiliation:

1. Edson Mororó Moura Institute of Technology—ITEMM, Recife 51020-280, Brazil

2. School of Electrical and Computer Engineering, University of Campinas—UNICAMP, Campinas 13083-852, Brazil

3. PostGrad Program in Systems Engineering (PPGES), University of Pernambuco—UPE, Recife 50100-010, Brazil

4. Departamento de Pesquisa, Desenvolvimento e Inovação, Departamento de Engenharia de Geração Solar, Companhia Hidro Elétrica do São Francisco—CHESF, Recife 50761-901, Brazil

Abstract

This article addresses the development of the energy compensation method used for the design of hybrid energy storage systems—HBESS. The combination of two battery technologies offers better cost and performance when considering microgrid systems to provide uninterrupted power to sensitive loads (substation auxiliary system) and also provides greater energy security. In the event of a failure, the load needs to continue operating, and batteries such as lithium ions have a fast response, but are expensive for large-scale systems. However, some technologies offer low-cost and good availability of energy for long hours of discharge, such as lead–acid batteries. Consequently, different battery technologies can be used to meet all the needs of the sensitive loads. A specific method for sizing a HBESS was developed for islanded microgrids to support sensitive loads. This method was developed to meet the demand for substations outside the Brazilian standard of power systems that lack an uninterrupted and reliable energy source. The method is validated by designing a microgrid to support the auxiliary systems of a transmission substation in northeastern Brazil. The results showed a system with a capacity of 1215 kWh of lead-carbon and 242 kWh of lithium ions is necessary to maintain an islanded microgrid for at least 10 h. Furthermore, the microgrid comprises a PV plant with an AC output power of 700 kW in connected operation and 100 kW when islanded from the grid.

Funder

Program of R&D of the Brazilian Electricity Regulatory Agency (ANEEL) and Companhia Hidro Elétrica do São Francisco - Eletrobras Chesf

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3