Deep Learning-Based Prediction of Unsteady Reynolds-Averaged Navier-Stokes Solutions for Vertical-Axis Turbines

Author:

Dorge Chloë,Bibeau Eric Louis

Abstract

The following study investigates the effectiveness of a deep learning-based method for predicting the flow field and flow-driven rotation of a vertical-axis hydrokinetic turbine operating in previously unseen free-stream velocities. A Convolutional Neural Network (CNN) is trained and tested using the solutions of five two-dimensional (2-D), foil-resolved Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations, with free-stream velocities of 1.0, 1.5, 2.0, 2.5, and 3.0 m/s. Based on the boundary conditions of free-stream velocity and rotor position, the flow fields of x-velocity, y-velocity, pressure, and turbulent viscosity are inferred, in addition to the angular velocity of the rotor. Three trained CNN models are developed to evaluate the effects of (1) the dimensions of the training data, and (2) the number of simulations used as training cases. Reducing data dimensions was found to diminish mean relative error in predictions of velocity and turbulent viscosity, while increasing it in predictions of pressure and angular velocity. Increasing the number of training cases from two to three was found to reduce relative error for all predicted unknowns. With the best achieved CNN model, the variables of x-velocity, y-velocity, pressure, turbulent viscosity, and angular velocity were inferred with mean relative errors of 6.93%, 9.82%, 10.7%, 7.48%, and 0.817%, respectively.

Funder

Natural Resources Canada

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3