Aerodynamically Interacting Vertical-Axis Wind Turbines: Performance Enhancement and Three-Dimensional Flow

Author:

Brownstein Ian D.,Wei Nathaniel J.,Dabiri John O.

Abstract

This study examined three-dimensional, volumetric mean velocity fields and corresponding performance measurements for an isolated vertical-axis wind turbine (VAWT) and for co- and counter-rotating pairs of VAWTs with varying incident wind direction and turbine spacings. The purpose was to identify turbine configurations and flow mechanisms that can improve the power densities of VAWT arrays in wind farms. All experiments were conducted at a Reynolds number of R e D = 7.3 × 10 4 . In the paired arrays, performance enhancement was observed for both the upstream and downstream turbines. Increases in downstream turbine performance correlate with bluff–body accelerations around the upstream turbine, which increase the incident freestream velocity on the downstream turbine in certain positions. Decreases in downstream turbine performance are determined by its position in the upstream turbine’s wake. Changes in upstream turbine performance are related to variations in the surrounding flow field due to the presence of the downstream rotor. For the most robust array configuration studied, an average 14% increase in array performance over approximately a 50° range of wind direction was observed. Additionally, three-dimensional vortex interactions behind pairs of VAWT were observed that can replenish momentum in the wake by advection rather than turbulent diffusion. These effects and their implications for wind-farm design are discussed.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3