A Virtual Impedance-Based Flying Start Considering Transient Characteristics for Permanent Magnet Synchronous Machine Drive Systems

Author:

Lee Yoon-Seong1ORCID,Choo Kyoung-Min2,Jeong Won-Sang1,Lee Chang-Hee3,Yi Junsin1,Won Chung-Yuen1

Affiliation:

1. Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea

2. Electric Propulsion Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51541, Republic of Korea

3. Dawonsys Co., Ltd., Anyang 15655, Republic of Korea

Abstract

A virtual impedance-based flying start considering transient characteristics for permanent magnet synchronous machine drive systems is proposed. The conventional flying start based on virtual resistance (VR) assumes that the load of the system is resistive. However, the maximum value of VR, which is determined by the machine parameter and sampling frequency, is sometimes small. In this case, the load of the system is non-resistive. This assumption error causes an estimated position error and degrades transient characteristics. In the proposed method, algebraic-type virtual inductance (VI) is added to the estimation current regulator of the flying start based on VR. This change improves the accuracy of the estimated rotor position and the transient characteristics. In addition, the discrete-time system model of the proposed flying start method is given, the stability was analyzed considering the change in VR caused by the proposed method, and the improvements were verified by PSIM simulations and experimental results.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flying Start of Sensorless Synchronous Machines with Reactive Power Injection;2023 IEEE International Electric Machines & Drives Conference (IEMDC);2023-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3