Improvement of PMSM Sensorless Control Based on Synergetic and Sliding Mode Controllers Using a Reinforcement Learning Deep Deterministic Policy Gradient Agent

Author:

Nicola MarcelORCID,Nicola Claudiu-IonelORCID,Selișteanu DanORCID

Abstract

The field-oriented control (FOC) strategy of a permanent magnet synchronous motor (PMSM) in a simplified form is based on PI-type controllers. In addition to their low complexity (an advantage for real-time implementation), these controllers also provide limited performance due to the nonlinear character of the description equations of the PMSM model under the usual conditions of a relatively wide variation in the load torque and the high dynamics of the PMSM speed reference. Moreover, a number of significant improvements in the performance of PMSM control systems, also based on the FOC control strategy, are obtained if the controller of the speed control loop uses sliding mode control (SMC), and if the controllers for the inner control loops of id and iq currents are of the synergetic type. Furthermore, using such a control structure, very good performance of the PMSM control system is also obtained under conditions of parametric uncertainties and significant variations in the combined rotor-load moment of inertia and the load resistance. To improve the performance of the PMSM control system without using controllers having a more complicated mathematical description, the advantages provided by reinforcement learning (RL) for process control can also be used. This technique does not require the exact knowledge of the mathematical model of the controlled system or the type of uncertainties. The improvement in the performance of the PMSM control system based on the FOC-type strategy, both when using simple PI-type controllers or in the case of complex SMC or synergetic-type controllers, is achieved using the RL based on the Deep Deterministic Policy Gradient (DDPG). This improvement is obtained by using the correction signals provided by a trained reinforcement learning agent, which is added to the control signals ud, uq, and iqref. A speed observer is also implemented for estimating the PMSM rotor speed. The PMSM control structures are presented using the FOC-type strategy, both in the case of simple PI-type controllers and complex SMC or synergetic-type controllers, and numerical simulations performed in the MATLAB/Simulink environment show the improvements in the performance of the PMSM control system, even under conditions of parametric uncertainties, by using the RL-DDPG.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3