A Higher-Order Graph Convolutional Network for Location Recommendation of an Air-Quality-Monitoring Station

Author:

Kang Yu,Chen Jie,Cao Yang,Xu ZhenyiORCID

Abstract

The location recommendation of an air-quality-monitoring station is a prerequisite for inferring the air-quality distribution in urban areas. How to use a limited number of monitoring equipment to accurately infer air quality depends on the location of the monitoring equipment. In this paper, our main objective was how to recommend optimal monitoring-station locations based on existing ones to maximize the accuracy of a air-quality inference model for inferring the air-quality distribution of an entire urban area. This task is challenging for the following main reasons: (1) air-quality distribution has spatiotemporal interactions and is affected by many complex external influential factors, such as weather and points of interest (POIs), and (2) how to effectively correlate the air-quality inference model with the monitoring station location recommendation model so that the recommended station can maximize the accuracy of the air-quality inference model. To solve the aforementioned challenges, we formulate the monitoring station location as an urban spatiotemporal graph (USTG) node recommendation problem in which each node represents a region with time-varying air-quality values. We design an effective air-quality inference model-based proposed high-order graph convolution (HGCNInf) that could capture the spatiotemporal interaction of air-quality distribution and could extract external influential factor features. Furthermore, HGCNInf can learn the correlation degree between the nodes in USTG that reflects the spatiotemporal changes in air quality. Based on the correlation degree, we design a greedy algorithm for minimizing information entropy (GMIE) that aims to mark the recommendation priority of unlabeled nodes according to the ability to improve the inference accuracy of HGCNInf through the node incremental learning method. Finally, we recommend the node with the highest priority as the new monitoring station location, which could bring about the greatest accuracy improvement to HGCNInf.

Funder

National Key R&D Program of China under Grant

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3