Long-Tailed Graph Representation Learning via Dual Cost-Sensitive Graph Convolutional Network

Author:

Duan YijunORCID,Liu XinORCID,Jatowt Adam,Yu Hai-taoORCID,Lynden Steven,Kim Kyoung-Sook,Matono Akiyoshi

Abstract

Deep learning algorithms have seen a massive rise in popularity for remote sensing over the past few years. Recently, studies on applying deep learning techniques to graph data in remote sensing (e.g., public transport networks) have been conducted. In graph node classification tasks, traditional graph neural network (GNN) models assume that different types of misclassifications have an equal loss and thus seek to maximize the posterior probability of the sample nodes under labeled classes. The graph data used in realistic scenarios tend to follow unbalanced long-tailed class distributions, where a few majority classes contain most of the vertices and the minority classes contain only a small number of nodes, making it difficult for the GNN to accurately predict the minority class samples owing to the classification tendency of the majority classes. In this paper, we propose a dual cost-sensitive graph convolutional network (DCSGCN) model. The DCSGCN is a two-tower model containing two subnetworks that compute the posterior probability and the misclassification cost. The model uses the cost as ”complementary information” in a prediction to correct the posterior probability under the perspective of minimal risk. Furthermore, we propose a new method for computing the node cost labels based on topological graph information and the node class distribution. The results of extensive experiments demonstrate that DCSGCN outperformed other competitive baselines on different real-world imbalanced long-tailed graphs.

Funder

New Energy and Industrial Technology Development Organization

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference57 articles.

1. Deep Learning on Graphs;Ma,2021

2. On spectral clustering: Analysis and an algorithm;Ng;Adv. Neural Inf. Process. Syst.,2002

3. Principles of Random Walk;Spitzer,2013

4. Label Propagation through Linear Neighborhoods

5. Efficient probabilistic logic reasoning with graph neural networks;Zhang;arXiv,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microbial data augmentation combining feature extraction and transformer network;International Journal of Machine Learning and Cybernetics;2023-12-17

2. Long-Tailed Object Detection for Multimodal Remote Sensing Images;Remote Sensing;2023-09-15

3. Long Tail Issue Analysis Using Deep Feature Space Representation;2023 International Conference on Data Science and Network Security (ICDSNS);2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3