Abstract
In this paper, based on stochastic optimization methods, a technique for optimal sizing of battery energy storage systems (BESSs) under wind uncertainties is provided. Due to considerably greater penetration of renewable energy sources, BESSs are becoming vital elements in microgrids. Integrating renewable energy sources in a power system together with a BESS enhances the efficiency of the power system by enhancing its accessibility and decreasing its operating and maintenance costs. Furthermore, the microgrid-connected BESS should be optimally sized to provide the required energy and minimize total investment and operation expenses. A constrained optimization problem is solved using an optimization technique to optimize a storage system. This problem of optimization may be deterministic or probabilistic. In case of optimizing the size of a BESS connected to a system containing renewable energy sources, solving a probabilistic optimization problem is more effective because it is not possible to accurately determine the forecast of their output power. In this paper, using the stochastic programming technique to discover the optimum size of a BESS to connect to a grid-connected microgrid comprising wind power generation, a probabilistic optimization problem is solved. A comparison is then produced to demonstrate that solving the problem using stochastic programming provides better outcomes and to demonstrate that the reliability of the microgrid improves after it is connected to a storage system. The simulation findings demonstrate the efficacy of the optimum sizing methodology proposed.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference82 articles.
1. Energy Storage for Sustainable Microgrid;Gao,2015
2. Enhancing the reliability of a microgrid through optimal size of battery ESS
3. 100% Green Computing At The Wrong Location?;Kienle,2012
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献