Model-Based Safety Analysis and Design Enhancement of a Marine LNG Fuel Feeding System

Author:

Milioulis Konstantinos,Bolbot Victor,Theotokatos GerasimosORCID

Abstract

Recent regulatory requirements for shipping emissions control have led to the adoption of Liquefied Natural Gas (LNG) as a marine fuel and the design of LNG-fuelled vessels. Considering the potential safety implications due to system failure/unavailability, this study aims at the safety analysis of a low-pressure LNG fuel feeding system using a novel model-based methodology. The proposed methodology is based on the functional system modelling, leading to the failure diagrams development, and combines the use of Failure Modes, Effects, and Criticality Analysis (FMECA) and Fault Tree Analysis (FTA), which are performed in MADe™ and PTC Windchill software environments. The FMECA results are employed to identify the investigated system critical components and failures as well as specifying the top events for the subsequently performed FTA, which evaluates the top events failure rates. The system critical components identification leads to the system design modification targeting reduced safety metrics. This study results demonstrate that the evaporator, pressure build-up unit, sensors, and cryogenic valve assemblies are the most critical components of the investigated system, whilst the enhanced system design exhibits a failure rate reduced by 69% in comparison to the baseline system. This study reveals the advantages of the developed methodology along with some limitations of the employed tools and contributes to the quantitative safety analysis and design of ship complex systems.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference46 articles.

1. Costs and Benefits of LNG as Ship Fuel for Container Vessels http://www.lngbunkering.org/sites/default/files/2013%20GL_MAN_LNG_study_web.pdf

2. Failure Modes and Predictive Diagnostics Considerations for Diesel Engines;Banks,2001

3. A Novel Method for Safety Analysis of Cyber-Physical Systems—Application to a Ship Exhaust Gas Scrubber System

4. Cruise ships power plant optimisation and comparative analysis

5. A novel multi-objective decision support method for ship energy systems synthesis to enhance sustainability

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3