Oxidation of Florfenicol and Oxolinic Acid in Seawater by Ozonation

Author:

Kye Homin,Oh Heegun,Jung Youmi,Kwon Minhwan,Yoon YeojoonORCID,Kang Joon-Wun,Hwang Tae-Mun

Abstract

There has been an increase in the use of antibiotics by the aquaculture industry in marine aquaculture for the prevention of diseases in fish. Antibiotics in the water discharged into the sea without treatment can cause disturbances to the marine ecosystem. Therefore, there is a need for research on how the removal of antibiotics used in aquaculture can be achieved. In this study, the removal of two types of antibiotics (florfenicol, FF, and oxolinic acid, OA) used in the aquaculture industry, by ozonation, was evaluated. Currently, there is a lack of research studies on FF and OA removal from seawater by ozonation. Seawater ozonation shows a significantly different oxidation mechanism as compared to that of freshwater. The high amount of Br− in seawater (60 mg/L) allows for a rapid reaction with ozone to produce bromine (HOBr/OBr−) at a rate of 160 M−1s−1. To predict the removal efficiency of antibiotics by ozone and bromine, the species-specific rate constants for the reaction of FF and OA with ozone and bromine were determined. The predicted removal efficiencies of FF and OA using measured rate constants were verified by the ozonation process in water containing bromide ions in similar concentrations as in seawater. The result for FF indicated less than 10% removal during 20 min, with the rate constants of FF with ozone and bromine being 3.2 M−1s−1 and 3.5 M−1s−1, respectively. However, the removal of OA using ozonation was approximately 99% or higher within 90 s. In the presence of bromide ions, approximately 60% of OA was removed by trace ozone within 15 s, and approximately 30% of OA was removed by the generated bromine after 15 s. Comparing the removability of FF and OA used in aquaculture by ozone, it was observed that FF was more difficult to remove because of its low reaction rate constant. Meanwhile, the reaction rates of OA with ozone and bromine were 2.4 × 103 M−1s−1 and 4.0 × 102 M−1s−1, respectively. At the beginning of the reaction, OA was removed by the trace ozone. Subsequently, OA was removed by the generated bromine after the ozone was decomposed.

Funder

Korea Environmental Industry and Technology Institute

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3