Automated Classification of Blood Loss from Transurethral Resection of the Prostate Surgery Videos Using Deep Learning Technique

Author:

Chen Jian-Wen,Lin Wan-Ju,Lin Chun-Yuan,Hung Che-Lun,Hou Chen-Pang,Cho Ching-Che,Young Hong-Tsu,Tang Chuan-Yi

Abstract

Transurethral resection of the prostate (TURP) is a surgical removal of obstructing prostate tissue. The total bleeding area is used to determine the performance of the TURP surgery. Although the traditional method for the detection of bleeding areas provides accurate results, it cannot detect them in time for surgery diagnosis. Moreover, it is easily disturbed to judge bleeding areas for experienced physicians because a red light pattern arising from the surgical cutting loop often appears on the images. Recently, the automatic computer-aided technique and artificial intelligence deep learning are broadly used in medical image recognition, which can effectively extract the desired features to reduce the burden of physicians and increase the accuracy of diagnosis. In this study, we integrated two state-of-the-art deep learning techniques for recognizing and extracting the red light areas arising from the cutting loop in the TURP surgery. First, the ResNet-50 model was used to recognize the red light pattern appearing in the chipped frames of the surgery videos. Then, the proposed Res-Unet model was used to segment the areas with the red light pattern and remove these areas. Finally, the hue, saturation, and value color space were used to classify the four levels of the blood loss under the circumstances of non-red light pattern images. The experiments have shown that the proposed Res-Unet model achieves higher accuracy than other segmentation algorithms in classifying the images with the red and non-red lights, and is able to extract the red light patterns and effectively remove them in the TURP surgery images. The proposed approaches presented here are capable of obtaining the level classifications of blood loss, which are helpful for physicians in diagnosis.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3