An Innovative Deep Learning Approach to Spinal Fracture Detection in CT Images

Author:

Wu Haiting,Fu Qingsong

Abstract

AIM: Spinal fractures, particularly vertebral compression fractures, pose a significant challenge in medical imaging due to their small-scale nature and blurred boundaries in Computed Tomography (CT) scans. However, advanced deep learning models, such as the integration of the You Only Look Once (YOLO) V7 model with Efficient Layer Aggregation Networks (ELAN) and Max-Pooling Convolution (MPConv) architectures, can substantially reduce the loss of small-scale information during computational processing, thus improving detection accuracy. The purpose of this study is to develop an innovative deep learning approach for detecting spinal fractures, particularly vertebral compression fractures, in CT images.  METHODS: We proposed a novel method to precisely identify spinal injury using the YOLO V7 model as a classifier. This model was enhanced by integrating ELAN and MPConv architectures, which were influenced by the Receptive Field Learning and Aggregation (RFLA) small object recognition framework. Standard normalization techniques were utilized to preprocess the CT images. The YOLO V7 model, integrated with ELAN and MPConv architectures, was trained using a dataset containing annotated spinal fractures. Additionally, to mitigate boundary ambiguities in compressive fractures, a Theoretical Receptive Field (TRF) based on Gaussian distribution and an Effective Receptive Field (ERF) were used to capture multi-scale features better. Furthermore, the Wasserstein distance was employed to optimize the model's learning process. A total of 240 CT images from patients diagnosed with spinal fractures were included in this study, sourced from Ningbo No.2 Hospital, ensuring a robust dataset for training the deep learning model.  RESULTS: Our method demonstrated superior performance over conventional object detection networks like YOLO V7 and YOLO V3. Specifically, with a dataset of 200 pathological images and 40 normal spinal images, our method achieved a 3% increase in accuracy compared to YOLO V7.  CONCLUSIONS: The proposed method offers an innovative and more effective approach for identifying vertebral compression fractures in CT scans. These promising findings suggest the method's potential for practical clinical applications, highlighting the significance of deep learning in enhancing patient care and treatment in medical imaging. Future research should incorporate cross-validation and independent validation and test sets to assess the model's robustness and generalizability. Additionally, exploring other deep learning models and methods could further enhance detection accuracy and reliability, contributing to the development of more effective diagnostic tools in medical imaging.

Publisher

Annali Italiani di Chirurgia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3