A Comprehensive Assessment of the Hydrological Evolution and Habitat Quality of the Xiangjiang River Basin

Author:

Hong Fengtian1,Guo Wenxian1,Wang Hongxiang1

Affiliation:

1. College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

Abstract

Human disturbance and climatic factors alter the hydrological state of rivers in many ways and have a degree of negative impact on the quality of watershed habitats; quantifying the impact of both human disturbance and climatic factors on hydrological change can help improve the quality of watershed habitats. Therefore, in this research, an integrated watershed assessment framework is proposed to analyse the watershed from four perspectives: hydrological situation, environmental flows, drivers, and habitat quality. A meteorological streamflow model based on the Long Short-Term Memory (LSTM) model was employed to analyse the hydrological evolution and quantify the influence of the drivers from the perspective of hydrological and environmental flows. The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model was then used to evaluate the spatial and temporal evolution of habitat quality in the basin. And, finally, the grey correlation theory was used to reveal the response of habitat quality to hydrological changes. Studies have shown that annual flow and precipitation are increasing in the Xiangjiang River (XJR) basin, while its annual potential evapotranspiration is decreasing significantly. After 1991, the hydrological conditions of the XJR were highly variable, with the combined rate of change of the most Ecologically Relevant Hydrological Indicators, ERHIs-IHA and ERHIs-EFCs, reaching 26.21% and 121.23%, respectively. Climate change and human disturbance are the main drivers of change for both (with contributions of 60% and 71%, respectively). Between 1990 and 2020, the habitat quality in the basin declined over time (from 0.770 to 0.757), with areas of high habitat value located mainly in mountainous areas and habitat degradation being concentrated in urban areas in the middle and lower reaches, gradually evolving towards areas of high habitat value in the periphery. There is a strong correlation between watershed habitat quality and the ERHIs. The results of the study can provide a scientific basis for maintaining regional ecological security and rational allocation of water resources.

Funder

National Nature Science Foundation of China

Wisdom Introduction Project of Henan Province

2023 Special Fundamental Research Project Plan for Higher Education Institutions in the Henan Province

North China University of Water Resources and Electric Power for the Master’s Innovation Capacity Enhancement Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3