Quantifying the impacts of climate change and human activities on ecological flow security based on a new framework

Author:

Wang Hongxiang1,Cheng Siyuan1,Bai Xiangyu1,Yuan Weiqi1,Wang Bing1,Hong Fengtian1,Guo Wenxian1

Affiliation:

1. School of Water Conservancy North China University of Water Resources and Electric Power Zhengzhou China

Abstract

AbstractClimate change and human activities combine to alter river hydrology, thereby threatening the health of river ecosystems. Quantifying the impacts of climate change and human activities on ecological flow assurance is essential for water resource management and river ecological protection. However, fewer studies quantify the impacts of climate change and human activities on ecological flow assurance based on a complete set of frameworks. The present study introduces an integrated assessment framework designed to quantify the impacts of climate change and human activities on ecological flow security. The framework includes the following steps: (1) natural river runoff reconstruction utilizing a semi‐distributed hydrological model (SWAT), (2) calculation of the most suitable ecological stream flow of the watershed ecosystem by using the non‐parametric kernel density estimation method, (3) calculation of the safety and security levels under minimum ecological flow and appropriate ecological flow conditions in the watershed and (4) quantification of the influences of climate change and human activities on the security of ecological flow in the watershed through the application of a quantitative attribution method. The impact of climate change and human activities on the ecological flow assurance level was analysed using three hydrological stations in Xiangtan, Hengyang and Laobutou, which are the main tributaries of the Xiangjiang River Basin, as a case study. The findings indicated a substantial decrease in ecological flow assurance levels across the basin during the period of human impact (1991–2019). The quantitative assessment results suggest that human activities predominantly drive the degradation of ecological flow assurance throughout the period of human impact, accounting for 57.05% of the total impact. Extensive gradient reservoir scheduling and anthropogenic water withdrawals were the main factors contributing to the degradation of ecological flow assurance in the study basin. The methodology and findings presented in this study offer insights into the evolutionary characteristics and driving forces behind ecological flow security in a dynamic environment. Furthermore, they establish a scientific foundation for local water resource management and river ecosystem protection.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3