The Future of Anticancer Drugs: A Cytotoxicity Assessment Study of CdSe/ZnS Quantum Dots

Author:

Hens Basant,Smothers Jared,Rizvanovic Husref,Patel Rishi,Wu Qihua,Kim KyoungtaeORCID

Abstract

Quantum dots (QDs), including CdSe/ZnS, are nanoparticles emitting various wavelengths of fluorescent light depending on their size. Fluorescence allows them to be exploited for in vivo sensing/imaging of cancer cells. Nevertheless, thorough assessments of the effects of these commonly used QDs on cell stability are essentially required prior to their full applications. To investigate the effects of Cd QDs on the growth of human cervical cancer cells (HeLa), we utilized a growth assay, a reactive oxygen species (ROS) assay, an apoptosis assay, and RNA-seq. The growth assay results showed significant proliferation inhibition of HeLa cells by CdSe/ZnS. We revealed that smaller green CdSe/ZnS exerts more toxic effects than slightly larger yellow CdSe/ZnS. There were no significant increases of ROSs under the treatment of Cd QDs, which is consistent with the notion that low concentration of Cd QDs does not cause significant production of ROSs. In addition, we found that Cd QDs induced late apoptosis. RNA-Seq-based transcriptome analysis revealed that the exposure to green Cd QDs significantly upregulated antiapoptotic, antiproliferative, and antitumorigenic functions. The transcriptome profile also noted the downregulation of pro-proliferation, mitochondrial respiratory chain, detoxification, and receptor-mediated endocytosis. Taken together, our findings provide evidence that green CdSe/ZnS can be an alternative anticancer drug. In addition, our transcriptome analysis provides new insights into alteration of physiological state induced by CdSe/ZnS QDs in HeLa cancer cells.

Funder

Engineer Research and Development Center

Publisher

MDPI AG

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3