Fabrication and Optimization of High Aspect Ratio Through-Silicon-Vias Electroplating for 3D Inductor

Author:

Li Haiwang,Liu Jiasi,Xu Tiantong,Xia Jingchao,Tan XiaoORCID,Tao Zhi

Abstract

In this study, the filling process of high aspect ratio through-silicon-vias (TSVs) under dense conditions using the electroplating method was efficiently achieved and optimized. Pulsed power was used as the experimental power source and the electroplating solution was prepared with various additive concentrations. Designed control variable experiments were conducted to determine the optimized method. In the control variable experiments, the relationship of multiple experimental variables, including current density (0.25–2 A/dm2), additive concentration (0.5–2 mL/L), and different shapes of TSVs (circle, oral, and square), were systematically analyzed. Considering the electroplating speed and quality, the influence of different factors on experimental results and the optimized parameters were determined. The results showed that increasing current density improved the electroplating speed but decreased the quality. Additives worked well, whereas their concentrations were controlled within a suitable range. The TSV shape also influenced the electroplating result. When the current density was 1.5 A/dm2 and the additive concentration was 1 mL/L, the TSV filling was relatively better. With the optimized parameters, 500-μm-deep TSVs with a high aspect ratio of 10:1 were fully filled in 20 h, and the via density reached 70/mm2. Finally, optimized parameters were adopted, and the electroplating of 1000-μm-deep TSVs with a diameter of 100 μm was completed in 45 h, which is the deepest and smallest through which a three-dimensional inductor has ever been successfully fabricated.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3