A Power-Efficient Sensing Approach for Pulse Wave Palpation-Based Heart Rate Measurement

Author:

Bravo Gabriel,Silva Jesús M.,Noriega Salvador A.,Martínez Erwin A.ORCID,Enríquez Francisco J.,Sifuentes ErnestoORCID

Abstract

Heart rate (HR) is an essential indicator of health in the human body. It measures the number of times per minute that the heart contracts or beats. An irregular heartbeat can signify a severe health condition, so monitoring heart rate periodically can help prevent heart complications. This paper presents a novel wearable sensing approach for remote HR measurement by a compact resistance-to-microcontroller interface circuit. A heartbeat’s signal can be detected by a Force Sensing Resistor (FSR) attached to the body near large arteries (such as the carotid or radial), which expand their area each time the heart expels blood to the body. Depending on how the sensor interfaces with the subject, the FSR changes its electrical resistance every time a pulse is detected. By placing the FSR in a direct interface circuit, those resistance variations can be measured directly by a microcontroller without using either analog processing stages or an analog-to-digital converter. In this kind of interface, the self-heating of the sensor is avoided, since the FSR does not require any voltage or bias current. The proposed system has a sampling rate of 50 Sa/s, and an effective resolution of 10 bits (200 mΩ), enough for obtaining well-shaped cardiac signals and heart rate estimations in real time by the microcontroller. With this approach, the implementation of wearable systems in health monitoring applications is more feasible.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3