Fatigue Models Based on Real Load Spectra and Corrected S-N Curve for Estimating the Residual Service Life of the Remanufactured Excavator Beam

Author:

Zhao Gang,Xiao Junsong,Zhou Qi

Abstract

To more accurately predict the residual fatigue cycles and estimate the service life of the remanufactured excavator, the fatigue models integrating the corrected S-N curve, the RFC algorithm, the FEA model, and the mechanism dynamic model are established depending on the real load spectra under experimental working conditions and the corrected S-N curve of the beam metal remanufactured with the welding process. Depending on the test data of the unidirectional stress history and the servo displacements of the major cylinders, the mechanism dynamic model was first established to illustrate the real load spectra applied on the pivots of the working beam. The load spectra are further used in the finite element analysis (FEA) model to obtain the stress contours of the beam relevant to the sampling time, which is the stress spectra at any nodes on the beam in theory. Subsequently, the rain flow counting (RFC) algorithm based on the dual parameters of the cyclic stress amplitude and mean is established to provide the frequency spectra in the longevity region on the beam. Furthermore, due to the fatigue property changes of the beam metal remanufactured with the welding process, its S-N curve is corrected based on the detail fatigue rating (DFR) method to compute the stress cycles at each stress level on the crisis nodes. Finally, the total stress cycles that can be burdened by the remanufactured beam is computed under the Miner’s linear fatigue cumulative criterion. The total number of stress cycles is eventually converted to the fatigue and service life depending on the proportion of the sampling time under relevant working conditions. The results show that integrated fatigue models provide a practical approach to enhancing the accuracy of the estimation on the residual service life of the remanufactured excavator beam. It is significant for improving the reliability and safety of the remanufactured excavator.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3