Abstract
In the operation of bolter miners, the cutting arm is an essential and weak part and its fatigue life directly affects its performance. This study aimed to investigate the influence of the cutting head load on the fatigue life of a cutting arm using the DEM-MFBD (Discrete Element Method-Multi Flexible Body Dynamics) bi-directional coupling technique. The EJM340 bolter miner was chosen as the research object, and a three-dimensional solid model of the bolter miner was built using the RecurDyn software. The cutting arm was flexibly modelled, and the tunnel model was built using the EDEM software. The motion parameters of the bolter miner and cutting head load were transferred through the bi-directional coupling interface to obtain the loads and stress parameters during the entire tunnel cutting process. Based on the stress-time variation, the fatigue life of the cutting arm was calculated, the overall damage and crack initiation locations were obtained, and the minimum number of cutting arm cycles was determined. The accuracy of the virtual model is verified through field experiments. The analysis results indicated that the crack emergence location and fatigue life obtained from the simulation were in agreement with the experimental results.
Funder
Chinese National Key R&D Program
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献