Thermal Management Technologies Used for High Heat Flux Automobiles and Aircraft: A Review

Author:

Lv Yi-GaoORCID,Zhang Gao-Peng,Wang Qiu-WangORCID,Chu Wen-XiaoORCID

Abstract

In recent years, global automotive industries are going through a significant revolution from traditional internal combustion engine vehicles (ICEVs) to electric vehicles (EVs) for CO2 emission reduction. Very similarly, the aviation industry is developing towards more electric aircraft (MEA) in response to the reduction in global CO2 emission. To promote this technology revolution and performance advancement, plenty of electronic devices with high heat flux are implemented on board automobiles and aircraft. To cope with the thermal challenges of electronics, in addition to developing wide bandgap (WBG) semiconductors with satisfactory electric and thermal performance, providing proper thermal management solutions may be a much more cost-effective way at present. This paper provides an overview of the thermal management technologies for electronics used in automobiles and aircraft. Meanwhile, the active methods include forced air cooling, indirect contact cold plate cooling, direct contact baseplate cooling, jet impingement, spray cooling, and so on. The passive methods include the use of various heat pipes and PCMs. The features, thermal performance, and development tendency of these active and passive thermal management technologies are reviewed in detail. Moreover, the environmental influences introduced by vibrations, shock, acceleration, and so on, on the thermal performance and reliability of the TMS are specially emphasized and discussed in detail, which are usually neglected in normal operating conditions. Eventually, the possible future directions are discussed, aiming to serve as a reference guide for engineers and promote the advancement of the next-generation electronics TMS in automobile and aircraft applications.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association, CAS

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3