Research on the Heat Dissipation in Aviation-Integrated Communication Equipment Based on Graphene Films

Author:

Qian Jingyi12ORCID,Liu Min1ORCID,Zhao Quan2,Luo Shimiao2,Xia Feng2,Bai Yunfeng2

Affiliation:

1. College of Electronic and Information Engineering, Tongji University, Shanghai 201804, China

2. Shanghai Aerospace Electronics Co., Ltd., Shanghai 201821, China

Abstract

Aviation-integrated communication equipment is integral to modern aircraft to ensure its performance and safety. The heat dissipation problems of equipment have become increasingly prominent for the high electronic integration and system power consumption. To solve the above problem, the heat dissipation performance of aviation-integrated communication equipment based on graphene films is deeply studied. This paper establishes a three-dimensional model of aviation-integrated communication equipment to simulate the distribution of temperature fields. The influence between aluminum alloy and graphene films on the surface of magnesium alloy on the heat dissipation performance of aviation-integrated communication equipment is studied. The simulation results show that the heat balance time of the equipment using graphene films on the surface of magnesium alloy is reduced from 3600 s to 800 s, representing an approximately 77.78% improvement; the measured equipment exhibited a reduction in its overall thermal equilibrium temperature, decreasing from 68.1 °C to 66.3 °C, representing an improvement of approximately 2.64%.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3