Study on Sintering Characteristics of Ultra-Poor Vanadium-Titanium Magnetite

Author:

Yang Songtao,Zhou Mi,Jiang Tao,Xue Xiangxin

Abstract

Artificial rich ore for blast furnace use can be produced by sintering ultra-poor vanadium-titanium magnetite (PVTM) with a high-grade iron concentrate. Here, acid (R = 0.33, 0.50), self-fluxing (R = 1.10), and high-basicity (R = 2.60) PVTM sinters were produced in a sinter pot. Their performances were determined using the comprehensive index. The microstructures of the PVTM sinter were observed by metallographic microscope and scanning electron microscopy equipped with an energy dispersion spectrum (SEM-EDS). The results suggest that the acid PVTM sinter had a low flame front speed, low productivity, an uneven size distribution, and poor softening properties. It did have a high tumble index (TI) and low-temperature reduction disintegration index (RDI). The self-fluxing PVTM sinter had the worst performance (TI, RDI, reducibility index (RI)), while the high-basicity PVTM sinter had the highest flame front speed, highest productivity, a reasonable size distribution, excellent softening properties, and satisfactory TI and RDI values. The main consolidation form of the acid sinter was crystal stock, the main bonding phase of the self-fluxing sinter was silicate, and the main bonding phase of the high-basicity sinter was silico-ferrite of calcium and aluminum (SFCA). The comprehensive index values (from high to low) were the high-basicity (R = 2.60), acid (R = 0.50), natural acid (R = 0.33), and self-fluxing (R = 1.10) PVTM sinters. When the production capacity of the acid pellet was in shortage, the acid PVTM sinter (R = 0.50) could be produced by the surplus from the sinter plant. This replaced a part of the acid pellet and the burden structural model of the blast furnace smelting vanadium so the titanium burden could adopt a ‘high-basicity PVTM sinter + acid V-Ti pellet + acid (R = 0.50) PVTM sinter’.

Funder

China Association for Science and Technology

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3