Research on Multi-Decision Sinter Composition Optimization Based on OLS Algorithm

Author:

Feng Shilong1234ORCID,Wang Bin5,Zhou Zixing5,Xue Tao2346,Yang Aimin2346,Li Yifan2346

Affiliation:

1. College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China

2. Hebei Engineering Research Center for the Intelligentization of Iron Ore Optimization and Ironmaking Raw Materials Preparation Processes, North China University of Science and Technology, Tangshan 063210, China

3. Hebei Key Laboratory of Data Science and Application, North China University of Science and Technology, Tangshan 063210, China

4. The Key Laboratory of Engineering Computing in Tangshan City, North China University of Science and Technology, Tangshan 063210, China

5. Ningxia Jianlong Industrial Co., Ltd., Shizuishan 753204, China

6. College of Science, North China University of Science and Technology, Tangshan 063210, China

Abstract

The adjustment of sintering raw materials has a decisive influence on the composition of blast furnace slag and the properties of sinter. In order to smelt high-quality molten iron in the blast furnace, the composition of the sinter must be properly adjusted so that the composition of the blast furnace slag and the metallurgical properties of the sinter are optimal for the quality of the iron and are conducive to the smooth operation of the blast furnace. In view of the huge difference in the quality and price of sintering raw materials, this paper proposes an automatic sintering ore blending model to quickly configure sintering raw materials according to the requirements of the production line. This method is based on the calculation process of blast furnace charge, combined with the constraints of process composition and cost performance, to establish a multi-decision sintering ore blending model based on the OLS(Ordinary least squares) algorithm to automatically screen from available raw materials and give the sinter that meets the requirements of the furnace. The plan finally makes TFe, CaO, MgO, SiO2, TiO2, Al2O3, P, Mn, Na2O, K2O, Zn, and other components meet the requirements of the production line, and meet the cost performance requirements of the enterprise for sinter. The model can complete the screening and proportioning of 43 kinds of raw materials within 10 s, and its performance can meet the requirements of the production of variable materials. Combined with an example, a comparative analysis experiment is carried out on the accuracy and practicability of the designed sintering and ore blending model. The experimental results show that the accuracy and efficiency of the method proposed in this paper are higher than those of the current ore blending scheme designed by enterprise engineers. This method can provide an effective reference for the stable operation of the sintering production line.

Funder

National Natural Science Foundation of China

Hebei Provincial Natural Science Foundation of China

Scientific Basic Research Projects

Hebei Natural Science Foundation Project

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3