Abstract
The present work is motivated by the effort to understand basic processes occurring in three-phase systems where small bubbles interact with large particles. The simplified system of a single bubble rising in a stagnant liquid and colliding with a solid surface is studied. The effect of two specific surfactants, α-Terpineol and n-Octanol, is investigated. Two independent measurements are combined: (i) bubble–solid surface collision experiments and (ii) the bubble shape oscillations induced by a movable capillary. Both experiments are based on high-speed imaging resulting in the evaluation of the restitution coefficient characterizing the collision process and the relative damping time characterizing the bubble shape oscillations in the presence of surfactants. It was observed that even for small concentrations of a surfactant, both the bubble shape oscillations and the bubble bouncing on the solid surface are significantly suppressed. Two predictions for the restitution coefficient are proposed. The equations include a term characterizing the suppression of the damping time in the presence of surfactants and a term balancing the inertia, capillary and viscous forces in the liquid film separating the bubble and the solid surface. The proposed equations successfully predict the restitution coefficient of bubble bouncing on the solid surface in liquids with the addition of specific surfactants.
Funder
Grantová Agentura České Republiky
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献