Flexure Behaviors of ABS-based Composites Containing Carbon and Kevlar Fibers by Material Extrusion 3D Printing

Author:

Wang ,Li ,Rao ,Wu ,Peng ,Yao ,Zhang ,Ahzi

Abstract

: Short-fiber-reinforced thermoplastics are popular for improving the mechanical properties exhibited by pristine thermoplastic materials. Due to the inherent conflict between strength and ductility, there are only a few successful cases of simultaneous enhancement of these two properties in polymer composite components. The objective of this work was to explore the feasibility of simultaneous enhancement of strength and ductility in ABS-based composites with short-carbon and Kevlar fiber reinforcement by material extrusion 3D printing (ME3DP). Microstructure characterization and measurement of thermal and mechanical properties were conducted to evaluate the fiber-reinforced ABS. The influence of printing raster orientation and build direction on the mechanical properties of material extrusion of 3D-printed composites was analyzed. Experimental results demonstrated that the reinforcement of the ABS-based composites by short-carbon and Kevlar fibers under optimized 3D-printing conditions led to balanced flexural strength and ductility. The ABS-based composites with a raster orientation of ±45° and side build direction presented the highest flexural behaviors among the samples in the current study. The main reason was attributed to the printed contour layers and the irregular zigzag paths, which could delay the initiation and propagation of microcracks.

Funder

Natural Science Foundation of Hunan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3