The role of the fiber–matrix interface in the tensile properties of short fiber–reinforced 3D‐printed polylactic acid composites

Author:

Tóth Csenge12,Lukács Norbert László1,Kovács Norbert Krisztián12ORCID

Affiliation:

1. Department of Polymer Engineering, Faculty of Mechanical Engineering Budapest University of Technology and Economics Budapest Hungary

2. MTA‐BME Lendület Lightweight Polymer Composites Research Group Budapest Hungary

Abstract

AbstractIn this study, we investigate the relationship between structure and properties of fiber–matrix adhesion for material extrusion–based 3‐dimensional (3D) printed composites. We examine the influence of fiber length and fiber content on the tensile properties of glass, basalt, and carbon fiber–reinforced polylactic acid (PLA) composites. Short fiber–reinforced filaments were produced, then, simple micromechanical models were used to predict the in‐plane tensile properties. We found that interlayer tensile properties are strongly influenced by fiber–matrix adhesion. If adhesion is sufficient, the fibers and matrix deform together under tensile load. A second‐order relationship describes interlayer tensile strength in relation to fiber content between 5 and 25 w%, with a maximum at 15 w%, for carbon and basalt fiber–reinforced composites. If adhesion is weak, the crack propagates along the fiber–matrix interface, causing brittle fracture and low strength. This behavior was noted for the glass fiber composite, for which the calculated interface shear strength was the lowest (1.4 MPa). In this case, fiber content is inversely proportional to interlayer tensile strength. Our results show the role of fiber–matrix adhesion quality on tensile properties, which has a major impact on both the accuracy of predictions and the damage processes.Highlights Critical fiber length determines accuracy of tensile property estimates Quality of fiber–matrix adhesion governs interlayer damage process Poor adhesion causes brittle fracture and low strength Second‐order relationship of interlayer tensile strength and fiber content Loss of interlayer tensile strength in composite due to fiber–matrix interface

Funder

Magyar Tudományos Akadémia

Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3