Abstract
Lightweight, high-strength and electrically conductive poly(butylene succinate) (PBS)/ carbon black (CB) nanocomposite foams with a density of 0.107–0.344 g/cm3 were successfully fabricated by a solid-state supercritical CO2 (ScCO2) foaming process. The morphology, thermal and dynamic mechanical properties, and rheological behavior of the PBS/CB nanocomposites were studied. The results indicate that the CB nanofiller was well dispersed in the PBS matrix and the presence of a proper CB nanofiller can accelerate the rate of crystallization, improve the thermal stability, enhance the stiffness, and increase the complex viscosity of PBS/CB nanocomposites. These improved properties were found to play an important role in the foaming process. The results from foaming experiments showed that the PBS/CB nanocomposite foams had a much smaller cell size, a higher cell density, and a more uniform cell morphology as compared to neat PBS foams. Furthermore, the PBS/CB nanocomposite foams also possessed low density (0.107–0.344 g/cm3), good electrical conductivity (~0.45 S/cm at 1.87 vol % CB loading), and improved compressive strength (108% increase), which enables them to be used as lightweight and high-strength functional materials.
Subject
Polymers and Plastics,General Chemistry
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献