Fabrication of Poly(butylene succinate)/Carbon Black Nanocomposite Foams with Good Electrical Conductivity and High Strength by a Supercritical CO2 Foaming Process

Author:

Chen ZhouORCID,Hu Junfeng,Ju Jiajun,Kuang TairongORCID

Abstract

Lightweight, high-strength and electrically conductive poly(butylene succinate) (PBS)/ carbon black (CB) nanocomposite foams with a density of 0.107–0.344 g/cm3 were successfully fabricated by a solid-state supercritical CO2 (ScCO2) foaming process. The morphology, thermal and dynamic mechanical properties, and rheological behavior of the PBS/CB nanocomposites were studied. The results indicate that the CB nanofiller was well dispersed in the PBS matrix and the presence of a proper CB nanofiller can accelerate the rate of crystallization, improve the thermal stability, enhance the stiffness, and increase the complex viscosity of PBS/CB nanocomposites. These improved properties were found to play an important role in the foaming process. The results from foaming experiments showed that the PBS/CB nanocomposite foams had a much smaller cell size, a higher cell density, and a more uniform cell morphology as compared to neat PBS foams. Furthermore, the PBS/CB nanocomposite foams also possessed low density (0.107–0.344 g/cm3), good electrical conductivity (~0.45 S/cm at 1.87 vol % CB loading), and improved compressive strength (108% increase), which enables them to be used as lightweight and high-strength functional materials.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3