PLA/CB and HDPE/CB conductive polymer composites: Effect of polymer matrix structure on the rheological and electrical percolation threshold

Author:

Pê Filipe R.1ORCID,Rodrigues Túlio A. C. S.1ORCID,da Cunha Rafael B.1ORCID,Cavalcanti Shirley N.1ORCID,da Silva Moacy P.1ORCID,Agrawal Pankaj1ORCID,Brito Gustavo F.1ORCID,de Mélo Tomás J. A.1ORCID

Affiliation:

1. Department of Materials Engineering Federal University of Campina Grande Campina Grande Brazil

Abstract

AbstractIn this study, the effect of the polymer matrix structure on the rheological and electrical percolation threshold of polymer/carbon black (CB) conductive polymer composites (CPCs) was investigated. Poly(lactic acid) (PLA) and high‐density polyethylene (HDPE) were used as polymer matrices. Through rheological analyses, an increase in complex viscosity was observed with increasing CB concentration, accompanied by a reduction in the Newtonian plateau. Additionally, an increase in the solid‐like behavior was observed, suggesting the formation of a percolated network. The rheological percolation threshold was found to be 5.13% CB mass fraction for the PLA/CB composite and 10.72% for the HDPE/CB composite. Electrical conductivity results were fitted to the sigmoidal Boltzmann model, and its derivative was used to identify the electrical percolation threshold. For PLA/CB, this threshold was reached at 5.39% CB mass fraction, while for HDPE/CB, it occurred at 5.75%. Morphology analysis by scanning electron microscopy and atomic force microscopy indicated that the polymer matrix structure affected the distribution/dispersion of the CB particles within the polymer matrix.Highlights The effect of polymer matrix structure on polymer/CB CPCs was investigated. The crystallinity of the polymer matrix affected the percolation threshold. PLA/CB showed higher conductivity than HDPE/CB CPCs.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Apoio à Pesquisa do Estado da Paraíba

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3