Abstract
The critical infiltration pressures of the matrix in a two-dimensional (2D) carbon fiber preform were calculated theoretically, and the calculated values of the static and dynamic models were 0.115 and 0.478 MPa, respectively. Compared with the dynamic model, there is no viscous resistance or infiltration front gas pressure in the static model, so the static value is obviously lower than the dynamic value. To verify the rationality of theoretical calculation, 2D carbon fiber reinforced plastics (2D-CFRP) with infiltration pressures of 0.5, 0.6, 0.7, 0.8, and 0.9 MPa were prepared by the vacuum infiltration hot pressing molding process. The microstructure of the composite was observed and the bending strength was tested by three-point bending test. The results show that the infiltration pressure has an important influence on the infiltration effect and the bending fracture morphology. When the infiltration pressure is 0.7 MPa, the composite has an excellent infiltration effect. The fibers distribute reasonable in the fracture. Stress can be effectively transferred when the composite material is loaded. And the bending strength of the composite material reaches 627 MPa at this time.
Subject
Polymers and Plastics,General Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献