Abstract
Graphene oxide-carbon fiber/epoxy (GO-CF/EP) composites with extrusion temperatures of 30, 40, 50, 60 and 70 °C were prepared by a vacuum infiltration hot-press-forming experimental system (VIHPS). The effects of extrusion temperature on the microstructure, fracture mechanism and mechanical properties of GO-CF/EP composites were investigated. It was found that the best mechanical property of composites and infiltration effect of the matrix in the fiber gap were obtained at the temperature of 50 °C, and the bending strength of the composite reached 728 MPa. The fiber was pulled out and broken under the wrapping of the matrix. The matrix viscosity was high, and the fluidity was poor when the extrusion temperature was low. The poor infiltration of the matrix resulted in many fibers failing to bond together, resulting in the disorderly breakage of fiber bundles. Under the condition of higher temperature, the flow speed of the matrix could be improved. However, part of the matrix was extruded during the extrusion process, and cracks and other defects occurred during the loading, which caused the brittle fracture of the specimen.
Funder
the Foundation of State Key Laboratory of Public Big Data
the National Natural Science Foundation of China
Natural Science Basic Research Programs of Shaanxi
the Key Scientific Research Project Plan of Colleges and Universities in Henan Province of China
the Scientific Research Program Funded by Education Department of Shaanxi Provincial Government
the Key Research and Development and Science and Technology Support Program in Henan Province
the Fundamental Research Funds for the Central Universities and Innovation Fund of Xidian University
Subject
General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献