Impacts of Hurricane Michael on Watershed Hydrology: A Case Study in the Southeastern United States

Author:

Worley Elijah,Liu NingORCID,Sun GeORCID,Norman Steven P.ORCID,Christie William M.,Gavazzi MichaelORCID,Boggs JohnnyORCID,McNulty Steven G.ORCID

Abstract

Hurricanes are one of the most significant threats to coastal plain forest ecosystems and urban communities of the southeastern U.S., but their implications for watershed hydrology are unclear. Hurricanes have the potential to alter water balances, causing extensive flooding, biogeochemical cycle disruption, and water quality degradation, saltwater intrusion, and increased nutrient sedimentation export in coastal watersheds. This case study focused on Hurricane Michael, a recent catastrophic event that impacted the Gulf coast, the Florida panhandle, southwestern Georgia, and southeastern Alabama. Through empirical (Double Mass Curve) and process-based ecohydrological modeling (WaSSI model) on long-term streamflow data, we explored whether vegetation damage caused by this hurricane resulted in an increase in streamflow two years after the extreme event. We found that monthly streamflow from the Chipola River watershed with an area of 2023 km2 did not change (<6%) appreciably during the first two years following the storm, arguably because only a fraction of the gauged watershed lost substantial tree cover. However, spatially explicit hydrological modeling suggested that several sub-watersheds with the highest decreases in the Normalized Difference Vegetation Index (NDVI) significantly increased their monthly streamflow in 2019 by up to 22%. These modeled streamflow anomalies subsided by the second growing season when vegetation recovered. Overall, this study suggests that changes in vegetation cover after Hurricane Michael did not have lasting impacts on the hydrology of this watershed, and the hydrology of coastal watersheds may be more resilient to hurricane disturbances than previously thought.

Funder

USDA Forest Service Southern Research Station

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3