Function of a Deep-Buried Isolated Trench and Its Effect on Cracking Failure Characteristics of a Slope under Artificial Rainfall

Author:

Wang LeiORCID,Li Rongjian,Zhang ShibinORCID,Li Rongjin,Bai Weishi,Xiao Huiping

Abstract

When tests are conducted on the field slope under artificial rainfall, because artificial rainfall is often limited to implementation in the mode of local rainfall, there is a boundary constraint effect between the rainfall area and the non-rainfall area, which is manifested in the lateral infiltration of rainwater and the slope deformation retardation of non-rainfall area to the rainfall area. Firstly, a deep-buried isolated trench was proposed to solve these boundary constraints. Then, field cracking tests and the corresponding numerical simulation were conducted under rainfall. In the end, the response of water content and the cracking failure characteristics of the slope were analyzed during rainfall, and the effect of a deep-buried isolated trench on the cracking characteristics of the slope was evaluated. The results indicate that the proposed deep-buried isolated trench measure can effectively eliminate the deformation retardation resulting from the adjacent non-rainfall area so a through-crack parallel to the slope shoulder that extended on both sides of the boundary of the rainfall slope was observed at the slope crest and a cracking failure in the shape of the overall downward cutting was realized. As the crack occurred, the rainwater infiltration further aggravated expansion of depthwise cracks, and a local sliding zone was formed in the upper part of the slope. The deep-buried isolated trench solves the boundary constraints, such as lateral infiltration of rainwater and deformation retardation, and can provide an effective technical measure for the field slope test under artificial rainfall.

Funder

the National Natural Science Foundation of China

Key R&D program of Shaanxi Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference35 articles.

1. Types and spatio-temporal distribution of loess landslides in loess plateau region: A case study in Wuqi county;Duan;J. Catastrophol.,2011

2. Impact of continued heavy rainfall on loess land slide hazard areas: A case study on Yan’an;Wang;Geol. Surv. Res.,2014

3. Deformation and failure mechanism of rainfall-induced shallow loess landslide;Sun;Geol. Bull. China,2021

4. Distribution and genetic types of loess landslides in China

5. The Spatiotemporal Relationship between Landslides and Mechanisms at the Heifangtai Terrace, Northwest China

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3