The Spatiotemporal Relationship between Landslides and Mechanisms at the Heifangtai Terrace, Northwest China

Author:

Gu Tianfeng,Wang Jiading,Lin HenryORCID,Xue QiangORCID,Sun Bin,Kong Jiaxu,Sun Jiaxing,Wang Chenxing,Zhang Fanchen,Wang Xiao

Abstract

Landslide disasters have occurred frequently in the Chinese Loess Plateau (CLP) due to increased agricultural irrigation. To explore the spatiotemporal relationship between landslides and mechanisms at the Heifangtai terrace, the HFT irrigated area was selected as a typical case study to investigate the fundamental mechanism of the irrigation-induced landslide in the CLP. Multi-temporal remote sensing images, topographic maps, and unmanned aerial vehicle (UAV) photogrammetry data were used to investigate the evolution progress of landslides. Moreover, the evolution mechanism was discussed through topographic analysis, field monitoring, and laboratory testing. The results showed that erosion, collapse, and sliding had occurred at different scales and at different locations in the past 50 years. With an average retrogressive speed of 9.6 × 103 m2 per year, the tableland decreased by 4.9 × 105 m2 from 1967 to 2018, accounting for about 4.5% of its total area. Over 20 landslides and collapses were extracted in the Dangchuan section in the past four years. More than 5.48 × 105 m3 of loess slipped with an average volume of 381 m3 per day. The evolutionary process of the irrigation-induced landslide, which features retrogression, lateral extension, and clustering, began with local failure and ended in a series of slidings. The increase of groundwater level was a slow process, which is the reason for the lagged occurrence of the landslide. The influence of rainfall and irrigation on slope stability was greater than that of the periodic change of the groundwater level. The triggering effect of irrigation and rainfall on the landslide had a time lag due to slow loess infiltration, and the time response among irrigation, rainfall, and groundwater level was 4–6 months. Our findings provide guidance, concerning the planning and controlling of landslide disasters, which is of critical value for human and construction safety.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3