Pedestrian Detection by Novel Axis-Line Representation and Regression Pattern

Author:

Zhang Mengxue,Liu Qiong

Abstract

The pattern of bounding box representation and regression has long been dominant in CNN-based pedestrian detectors. Despite the method’s success, it cannot accurately represent location, and introduces unnecessary background information, while pedestrian features are mainly located in axis-line areas. Other object representations, such as corner-pairs, are not easy to obtain by regression because the corners are far from the axis-line and are greatly affected by background features. In this paper, we propose a novel detection pattern, named Axis-line Representation and Regression (ALR), for pedestrian detection in road scenes. Specifically, we design a 3-d axis-line representation for pedestrians and use it as the regression target during network training. A line-box transformation method is also proposed to fit the widely used box-annotations. Meanwhile, we explore the influence of deformable convolution base-offset on detection performance and propose a base-offset initialization strategy to further promote the gain brought by ALR. Notably, the proposed ALR pattern can be introduced into both anchor-based and anchor-free frameworks. We validate the effectiveness of ALR on the Caltech-USA and CityPersons datasets. Experimental results show that our approach outperforms the baseline significantly through simple modifications and achieves competitive accuracy with other methods without bells and whistles.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3