Two-Stage Pedestrian Detection Model Using a New Classification Head for Domain Generalization

Author:

Schulz Daniel12,Perez Claudio A.12ORCID

Affiliation:

1. Department of Electrical Engineering, and Advanced Mining Technology Center, Universidad de Chile, Santiago 8370451, Chile

2. IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620086, Chile

Abstract

Pedestrian detection based on deep learning methods have reached great success in the past few years with several possible real-world applications including autonomous driving, robotic navigation, and video surveillance. In this work, a new neural network two-stage pedestrian detector with a new custom classification head, adding the triplet loss function to the standard bounding box regression and classification losses, is presented. This aims to improve the domain generalization capabilities of existing pedestrian detectors, by explicitly maximizing inter-class distance and minimizing intra-class distance. Triplet loss is applied to the features generated by the region proposal network, aimed at clustering together pedestrian samples in the features space. We used Faster R-CNN and Cascade R-CNN with the HRNet backbone pre-trained on ImageNet, changing the standard classification head for Faster R-CNN, and changing one of the three heads for Cascade R-CNN. The best results were obtained using a progressive training pipeline, starting from a dataset that is further away from the target domain, and progressively fine-tuning on datasets closer to the target domain. We obtained state-of-the-art results, MR−2 of 9.9, 11.0, and 36.2 for the reasonable, small, and heavy subsets on the CityPersons benchmark with outstanding performance on the heavy subset, the most difficult one.

Funder

Agencia Nacional de Investigación y Desarrollo

Department of Electrical Engineering, Universidad de Chile

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3