Understanding the Function and Mechanism of Zebrafish Tmem39b in Regulating Cold Resistance

Author:

Liu Renyan,Long YongORCID,Liu RanORCID,Song Guili,Li Qing,Yan Huawei,Cui ZongbinORCID

Abstract

Autophagy and endoplasmic reticulum (ER) stress response are among the key pathways regulating cold resistance of fish through eliminating damaged cellular components and facilitating the restoration of cell homeostasis upon exposure to acute cold stress. The transmembrane protein 39A (TMEM39A) was reported to regulate both autophagy and ER stress response, but its vertebrate-specific paralog, the transmembrane protein 39B (TMEM39B), has not been characterized. In the current study, we generate tmem39b-knockout zebrafish lines and characterize their survival ability under acute cold stress. We observed that the dysfunction of Tmem39b remarkably decreased the cold resilience of both the larval and adult zebrafish. Gene transcription in the larvae exposed to cold stress and rewarming were characterized by RNA sequencing (RNA-seq) to explore the mechanisms underlying functions of Tmem39b in regulating cold resistance. The results indicate that the deficiency of Tmem39b attenuates the up-regulation of both cold- and rewarming-induced genes. The cold-induced transcription factor genes bif1.2, fosab, and egr1, and the rewarming-activated immune genes c3a.3, il11a, and sting1 are the representatives influenced by Tmem39b dysfunction. However, the loss of tmem39b has little effect on the transcription of the ER stress response- and autophagy-related genes. The measurements of the phosphorylated H2A histone family member X (at Ser 139, abbreviated as γH2AX) demonstrate that zebrafish Tmem39b protects the cells against DNA damage caused by exposure to the cold-warming stress and facilitates tissue damage repair during the recovery phase. The gene modules underlying the functions of Tmem39b in zebrafish are highly enriched in biological processes associated with immune response. The dysfunction of Tmem39b also attenuates the up-regulation of tissue C-reactive protein (CRP) content upon rewarming. Together, our data shed new light on the function and mechanism of Tmem39b in regulating the cold resistance of fish.

Funder

National Natural Science Foundation of China

Special Fund Project for Guangdong Academy of Sciences to Build Domestic First-class Research institutions

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3