The TRPV1 Receptor Is Up-Regulated by Sphingosine 1-Phosphate and Is Implicated in the Anandamide-Dependent Regulation of Mitochondrial Activity in C2C12 Myoblasts

Author:

Standoli SaraORCID,Pecchioli SaraORCID,Tortolani DanielORCID,Di Meo CamillaORCID,Fanti FedericoORCID,Sergi ManuelORCID,Bacci MarinaORCID,Seidita IsabelleORCID,Bernacchioni CaterinaORCID,Donati ChiaraORCID,Bruni PaolaORCID,Maccarrone MauroORCID,Rapino CinziaORCID,Cencetti FrancescaORCID

Abstract

The sphingosine 1-phosphate (S1P) and endocannabinoid (ECS) systems comprehend bioactive lipids widely involved in the regulation of similar biological processes. Interactions between S1P and ECS have not been so far investigated in skeletal muscle, where both systems are active. Here, we used murine C2C12 myoblasts to investigate the effects of S1P on ECS elements by qRT-PCR, Western blotting and UHPLC-MS. In addition, the modulation of the mitochondrial membrane potential (ΔΨm), by JC-1 and Mitotracker Red CMX-Ros fluorescent dyes, as well as levels of protein controlling mitochondrial function, along with the oxygen consumption were assessed, by Western blotting and respirometry, respectively, after cell treatment with methanandamide (mAEA) and in the presence of S1P or antagonists to endocannabinoid-binding receptors. S1P induced a significant increase in TRPV1 expression both at mRNA and protein level, while it reduced the protein content of CB2. A dose-dependent effect of mAEA on ΔΨm, mediated by TRPV1, was evidenced; in particular, low doses were responsible for increased ΔΨm, whereas a high dose negatively modulated ΔΨm and cell survival. Moreover, mAEA-induced hyperpolarization was counteracted by S1P. These findings open new dimension to S1P and endocannabinoids cross-talk in skeletal muscle, identifying TRPV1 as a pivotal target.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3