Variant-Specific Analysis Reveals a Novel Long-Range RNA-RNA Interaction in SARS-CoV-2 Orf1a

Author:

Dukeshire Matthew,Schaeper David,Venkatesan Pravina,Manzourolajdad Amirhossein

Abstract

Since the start of the COVID-19 pandemic, understanding the pathology of the SARS-CoV-2 RNA virus and its life cycle has been the priority of many researchers. Currently, new variants of the virus have emerged with various levels of pathogenicity and abundance within the human-host population. Although much of viral pathogenicity is attributed to the viral Spike protein’s binding affinity to human lung cells’ ACE2 receptor, comprehensive knowledge on the distinctive features of viral variants that might affect their life cycle and pathogenicity is yet to be attained. Recent in vivo studies into the RNA structure of the SARS-CoV-2 genome have revealed certain long-range RNA-RNA interactions. Using in silico predictions and a large population of SARS-CoV-2 sequences, we observed variant-specific evolutionary changes for certain long-range RRIs. We also found statistical evidence for the existence of one of the thermodynamic-based RRI predictions, namely Comp1, in the Beta variant sequences. A similar test that disregarded sequence variant information did not, however, lead to significant results. When performing population-based analyses, aggregate tests may fail to identify novel interactions due to variant-specific changes. Variant-specific analyses can result in de novo RRI identification.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3