Experimental and computational methods for studying the dynamics of RNA–RNA interactions in SARS-COV2 genomes

Author:

Srivastava Mansi12,Dukeshire Matthew R1,Mir Quoseena1,Omoru Okiemute Beatrice1,Manzourolajdad Amirhossein13,Janga Sarath Chandra145ORCID

Affiliation:

1. School of Informatics and Computing, Indiana University Purdue University Department of BioHealth Informatics, , 535 West Michigan Street, Indianapolis, Indiana 46202 , USA

2. Indiana University Department of Biology, , 1001 East 3rd St, Bloomington, Indiana 47405 , USA

3. Colgate University Department of Computer Science, , Hamilton, NY , USA

4. Indiana University School of Medicine Department of Medical and Molecular Genetics, , Medical Research and Library Building, 975 West Walnut Street, Indianapolis, Indiana 46202 , USA

5. Indiana University School of Medicine Centre for Computational Biology and Bioinformatics, , 5021 Health Information and Translational Sciences (HITS), 410 West 10th Street, Indianapolis, Indiana 46202 , USA

Abstract

Abstract Long-range ribonucleic acid (RNA)–RNA interactions (RRI) are prevalent in positive-strand RNA viruses, including Beta-coronaviruses, and these take part in regulatory roles, including the regulation of sub-genomic RNA production rates. Crosslinking of interacting RNAs and short read-based deep sequencing of resulting RNA–RNA hybrids have shown that these long-range structures exist in severe acute respiratory syndrome coronavirus (SARS-CoV)-2 on both genomic and sub-genomic levels and in dynamic topologies. Furthermore, co-evolution of coronaviruses with their hosts is navigated by genetic variations made possible by its large genome, high recombination frequency and a high mutation rate. SARS-CoV-2’s mutations are known to occur spontaneously during replication, and thousands of aggregate mutations have been reported since the emergence of the virus. Although many long-range RRIs have been experimentally identified using high-throughput methods for the wild-type SARS-CoV-2 strain, evolutionary trajectory of these RRIs across variants, impact of mutations on RRIs and interaction of SARS-CoV-2 RNAs with the host have been largely open questions in the field. In this review, we summarize recent computational tools and experimental methods that have been enabling the mapping of RRIs in viral genomes, with a specific focus on SARS-CoV-2. We also present available informatics resources to navigate the RRI maps and shed light on the impact of mutations on the RRI space in viral genomes. Investigating the evolution of long-range RNA interactions and that of virus–host interactions can contribute to the understanding of new and emerging variants as well as aid in developing improved RNA therapeutics critical for combating future outbreaks.

Funder

IUPUI’s Office of the Vice Chancellor for Research COVID-19 Rapid Response

National Science Foundation

National Institute of General Medical Sciences

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3