Egg Protein Transferrin-Derived Peptides Irw (Lle-Arg-Trp) and Iqw (Lle-Gln-Trp) Prevent Obesity Mouse Model Induced by a High-Fat Diet via Reducing Lipid Deposition and Reprogramming Gut Microbiota

Author:

Liu Zhuangzhuang,Ding SujuanORCID,Jiang Hongmei,Fang Jun

Abstract

Egg-derived peptides play important roles in insulin secretion and sensitivity, oxidative stress, and inflammation, suggesting their possible involvement in obesity management. Hence, the aim of this study is to explore the alleviating effects of IRW (lle-Arg-Trp) and IQW (lle-Gln-Trp) on obesity via the mouse model induced by a high-fat diet. The entire experimental period lasted eight weeks. The results demonstrated that IQW prevented weight gain (6.52%), decreased the glucose, low-density lipoprotein (LDL), malonaldehyde, triglycerides, total cholesterol (TC), and leptin levels, and increased the concentration of adiponectin (p < 0.05, n = 8). Although IRW failed to prevent weight gain, it reduced the concentration of glucose, high-density lipoprotein (HDL), LDL, and leptin, and increased the concentration of adiponectin (p < 0.05, n = 8). Moreover, IRW and IQW increased glucose tolerance and insulin resistance based on the results of the intraperitoneal glucose test and insulin tolerance test (p < 0.05, n = 8). The quantitative polymerase chain reaction results revealed that IRW and IQW downregulated the mRNA expression of DGAT1 (Diacylglycerol O-Acyltransferase 1), DGAT2 (Diacylglycerol O-Acyltransferase 2), TNF-α, IL-6, and IL-1β of liver tissue (p < 0.05, n = 8). The results of the 16S ribosomal RNA amplicon sequencing showed that IQW and IRW tended to reduce the relative abundance of Firmicutes and Parabacteroides, and that IRW enhanced the abundance of Bacteroides (p < 0.05, n = 8). Collectively, IRW and IQW supplementation could alleviate the progression of obesity due to the fact that the supplementation reduced lipid deposition, maintained energy balance, and reprogrammed gut microbiota.

Funder

National Natural Science Foundation of China

Ministry of Agricultural of the People’s Republic of China

Hunan Provincial Science and Technology Department

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3