Abstract
In oil palm crop, soil fertility is less important than the physical soil characteristics. It is important to have a balance and sufficient soil moisture to sustain high yields in oil palm plantations. However, conventional methods of soil moisture determination are laborious and time-consuming with limited coverage and accuracy. In this research, we evaluated synthetic aperture radar (SAR) and in-situ observations at an oil palm plantation to determine SAR signal sensitivity to oil palm crop by means of water cloud model (WCM) inversion for retrieving soil moisture from L-band HH and HV polarized data. The effects of vegetation on backscattering coefficients were evaluated by comparing Leaf Area Index (LAI), Leaf Water Area Index (LWAI) and Normalized Plant Water Content (NPWC). The results showed that HV polarization effectively simulated backscatter coefficient as compared to HH polarization where the best fit was obtained by taking the LAI as a vegetation descriptor. The HV polarization with the LAI indicator was able to retrieve soil moisture content with an accuracy of at least 80%.
Funder
Japan Aerospace Exploration Agency
Subject
General Earth and Planetary Sciences
Reference75 articles.
1. Improving soil moisture with conservation agriculture;Benites;Leisa Mag.,2003
2. Growth and production of oil palm;Verheye,2010
3. Water deficit and irrigation in oil palm: A review of recent studies and findings;Noor;Oil Palm Bull.,2004
4. Crop Production under Drought and Heat Stress: Plant Responses and Management Options
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献