Soil Moisture Inversion in Grassland Ecosystem Using Remote Sensing Considering Different Grazing Intensities and Growing Seasons

Author:

Cui Jiahe1,Wang Yuchi1,Wu Yantao1ORCID,Li Zhiyong1,Li Hao1,Miao Bailing2,Wang Yongli2,Jia Chengzhen2,Liang Cunzhu1

Affiliation:

1. Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China

2. Inner Mongolia Meteorological Institute, Hohhot 010051, China

Abstract

Although vegetation community information such as grazing gradient, biomass, and density have been well characterized in typical grassland communities with Stipa grandis and Leymus chinensis as dominant species, their impact on the soil moisture (SM) inversion is still unclear. This study investigated the characteristics of a grassland vegetation community at different grazing gradients and growing seasons and its impact on SM inversion using remote sensing data. The water cloud model (WCM) was used for SM inversion, and both field and remote sensing data collected from 2019 to 2021 were used for calibration and prediction. The study found that the calibrated WCM achieved prediction results of SM inversion with average R2 values of 0.41 and 0.38 at different grazing gradients and growing seasons, respectively. Vegetation biomass and height were significantly correlated with vegetation indexes, and the highest model prediction accuracy was achieved for biomass and height around 121.1 g/m2 [102.3–139.9] and 18.6 cm [17.3–19.8], respectively. Generally, NDWI1 produced higher SM estimation accuracy than NDWI2. The growing season of vegetation also affects the accuracy of the WCM to retrieve SM, with the highest accuracy achieved in mid-growing season I. Therefore, the developed WCM with optimal height and biomass of vegetation communities can enhance the SM prediction capacity; it thus can be potentially used for SM prediction in typical grasslands.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Inner Mongolia

Science and Technology of Inner Mongolia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3