A Comparative Estimation of Maize Leaf Water Content Using Machine Learning Techniques and Unmanned Aerial Vehicle (UAV)-Based Proximal and Remotely Sensed Data

Author:

Ndlovu Helen S.,Odindi John,Sibanda MbulisiORCID,Mutanga OnisimoORCID,Clulow Alistair,Chimonyo Vimbayi G. P.ORCID,Mabhaudhi TafadzwanasheORCID

Abstract

Determining maize water content variability is necessary for crop monitoring and in developing early warning systems to optimise agricultural production in smallholder farms. However, spatially explicit information on maize water content, particularly in Southern Africa, remains elementary due to the shortage of efficient and affordable primary sources of suitable spatial data at a local scale. Unmanned Aerial Vehicles (UAVs), equipped with light-weight multispectral sensors, provide spatially explicit, near-real-time information for determining the maize crop water status at farm scale. Therefore, this study evaluated the utility of UAV-derived multispectral imagery and machine learning techniques in estimating maize leaf water indicators: equivalent water thickness (EWT), fuel moisture content (FMC), and specific leaf area (SLA). The results illustrated that both NIR and red-edge derived spectral variables were critical in characterising the maize water indicators on smallholder farms. Furthermore, the best models for estimating EWT, FMC, and SLA were derived from the random forest regression (RFR) algorithm with an rRMSE of 3.13%, 1%, and 3.48%, respectively. Additionally, EWT and FMC yielded the highest predictive performance and were the most optimal indicators of maize leaf water content. The findings are critical towards developing a robust and spatially explicit monitoring framework of maize water status and serve as a proxy of crop health and the overall productivity of smallholder maize farms.

Funder

Water Research Commission

National Research Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference70 articles.

1. Water Status Assessment in Maize and Sunflower Crops Using Sentinel-2 Multispectral Data;Avetisyan;Space Ecol. Saf.,2019

2. Estimation of Maize (Zea mays L.) Yield Per Harvest Area: Appropriate Methods

3. Economic analysis of smallholder maize farmers: Implications for public extension services in Eastern Cape;Agbugba;S. Afr. J. Agric. Ext.,2020

4. The Utility of the Upcoming HyspIRI’s Simulated Spectral Settings in Detecting Maize Gray Leafy Spot in Relation to Sentinel-2 MSI, VENµS, and Landsat 8 OLI Sensors

5. The Role of Smallholder Farms in Food and Nutrition Security;Gomez y Paloma,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3