Spatial Analysis of Urban Residential Sensitivity to Heatwave Events: Case Studies in Five Megacities in China

Author:

Zhi GuoqingORCID,Meng BinORCID,Wang Juan,Chen Siyu,Tian Bin,Ji Huimin,Yang Tong,Wang Bingqing,Liu JianORCID

Abstract

Urban heatwaves increase residential health risks. Identifying urban residential sensitivity to heatwave risks is an important prerequisite for mitigating the risks through urban planning practices. This research proposes a new paradigm for urban residential sensitivity to heatwave risks based on social media Big Data, and describes empirical research in five megacities in China, namely, Beijing, Nanjing, Wuhan, Xi’an and Guangzhou, which explores the application of this paradigm to real-world environments. Specifically, a method to identify urban residential sensitive to heatwave risks was developed by using natural language processing (NLP) technology. Then, based on remote sensing images and Weibo data, from the perspective of the relationship between people (group perception) and the ground (meteorological temperature), the relationship between high temperature and crowd sensitivity in geographic space was studied. Spatial patterns of the residential sensitivity to heatwaves over the study area were characterized at fine scales, using the information extracted from remote sensing information, spatial analysis, and time series analysis. The results showed that the observed residential sensitivity to urban heatwave events (HWEs), extracted from Weibo data (Chinese Twitter), best matched the temporal trends of HWEs in geographic space. At the same time, the spatial distribution of observed residential sensitivity to HWEs in the cities had similar characteristics, with low sensitivity in the urban center but higher sensitivity in the countryside. This research illustrates the benefits of applying multi-source Big Data and intelligent analysis technologies to the understand of impacts of heatwave events on residential life, and provide decision-making data for urban planning and management.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Beijing Union University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3