Abstract
AbstractCompared to individual hot days/nights, compound hot extremes that combine daytime and nighttime heat are more impactful. However, past and future changes in compound hot extremes as well as their underlying drivers and societal impacts remain poorly understood. Here we show that during 1960–2012, significant increases in Northern Hemisphere average frequency (~1.03 days decade−1) and intensity (~0.28 °C decade−1) of summertime compound hot extremes arise primarily from summer-mean warming. The forcing of rising greenhouse gases (GHGs) is robustly detected and largely accounts for observed trends. Observationally-constrained projections suggest an approximate eightfold increase in hemispheric-average frequency and a threefold growth in intensity of summertime compound hot extremes by 2100 (relative to 2012), given uncurbed GHG emissions. Accordingly, end-of-century population exposure to compound hot extremes is projected to be four to eight times the 2010s level, dependent on demographic and climate scenarios.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference65 articles.
1. Åström, D. O., Forsberg, B., Ebi, K. L. & Rocklöv, J. Attributing mortality from extreme temperatures to climate change in Stockholm, Sweden. Nat. Clim. Change 3, 1050–1054 (2013).
2. Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).
3. Gosling, S. N., Lowe, J. A., McGregor, G. R., Pelling, M. & Malamud, B. D. Associations between elevated atmospheric temperature and human mortality: a critical review of the literature. Clim. Change 92, 299–341 (2009).
4. Mora, C. et al. Global risk of deadly heat. Nat. Clim. Change 7, 501–506 (2017).
5. Bindoff, N. L. et al. Detection and Attribution of Climate Change: from Global to Regional. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 910–912 (IPCC, Cambridge Univ. Press, 2013).
Cited by
189 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献