Mechanical Behavior and Optimization of Tubing String with Expansion Joint during Fracturing in HTUHP Wells

Author:

Mou Yisheng,Yang Shangyu,Han Lihong,Wang Jianjun,Lian Zhanghua

Abstract

During the formation testing in high-temperature (HT) and ultra-high-pressure (UHP) wells, one of the major challenges is packer failure in the downhole caused by high-rate fracturing. In such a case, the axial shrinkage trend of the tubing string could be caused by the sudden drop in temperature, but the actual axial length of the tubing string would not change because of the constraints at wellhead and packer. Therefore, this could lead to the upward pull-out of the packer that is due to excessive load from the tubing string. This out-of-control downhole pressure often leads to irreversible consequences, even well abandonment. An expansion joint, as a movable splicer, has the characteristic of mitigating packer load, which can theoretically enhance packer safety. To study the protective effect of an expansion joint on the packer quantitatively, the microscopic characteristics and macroscopic properties of the tubing material (13Cr110) are obtained through experimental tests. Moreover, the mechanical properties of the material at different temperatures are also tested. Then, the testing results are extended to modeling the finite element model (FEM) of the whole section of tubing string with the expansion joint—casing and simulating its internal force changes under fracturing conditions with different injection rates. Our simulation results indicated that an expansion joint can significantly change the distribution of the internal forces in the tubing string, and this change can effectively reduce the load on the packer. Eventually, a tubing string buckling identification plate that considers the injection rate and expansion joint–packer length is obtained to optimize the placement of an expansion joint in the tubing string. Our work can provide a detailed theoretical reference and basis for an expansion joint in field application.

Funder

Research on key technology of casing damage evaluation and repair in oil and gas wells

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3