Enhancing Robustness of Viewpoint Changes in 3D Skeleton-Based Human Action Recognition

Author:

Park Jinyoon12ORCID,Kim Chulwoong2ORCID,Kim Seung-Chan1ORCID

Affiliation:

1. Machine Learning Systems Lab., Department of Sport Interaction Science, Sungkyunkwan University, Suwon 16419, Republic of Korea

2. TAIIPA—Taean AI Industry Promotion Agency, Taean 32154, Republic of Korea

Abstract

Previous research on 3D skeleton-based human action recognition has frequently relied on a sequence-wise viewpoint normalization process, which adjusts the view directions of all segmented action sequences. This type of approach typically demonstrates robustness against variations in viewpoint found in short-term videos, a characteristic commonly encountered in public datasets. However, our preliminary investigation of complex action sequences, such as discussions or smoking, reveals its limitations in capturing the intricacies of such actions. To address these view-dependency issues, we propose a straightforward, yet effective, sequence-wise augmentation technique. This strategy enhances the robustness of action recognition models, particularly against changes in viewing direction that mainly occur within the horizontal plane (azimuth) by rotating human key points around either the z-axis or the spine vector, effectively creating variations in viewing directions. We scrutinize the robustness of this approach against real-world viewpoint variations through extensive empirical studies on multiple public datasets, including an additional set of custom action sequences. Despite the simplicity of our approach, our experimental results consistently yield improved action recognition accuracies. Compared to the sequence-wise viewpoint normalization method used with advanced deep learning models like Conv1D, LSTM, and Transformer, our approach showed a relative increase in accuracy of 34.42% for the z-axis and 10.86% for the spine vector.

Funder

Korea Evaluation Institute of Industrial Technology

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3