Recognition of Forward Head Posture Through 3D Human Pose Estimation With a Graph Convolutional Network: Development and Feasibility Study (Preprint)

Author:

Lee HaedeunORCID,Oh BumjoORCID,Kim Seung-ChanORCID

Abstract

BACKGROUND

Prolonged improper posture can lead to forward head posture (FHP), causing headaches, impaired respiratory function, and fatigue. This is especially relevant in sedentary scenarios, where individuals often maintain static postures for extended periods—a significant part of daily life for many. The development of a system capable of detecting FHP is crucial, as it would not only alert users to correct their posture but also serve the broader goal of contributing to public health by preventing the progression of chronic injuries associated with this condition. However, despite significant advancements in estimating human poses from standard 2D images, most computational pose models do not include measurements of the craniovertebral angle, which involves the C7 vertebra, crucial for diagnosing FHP.

OBJECTIVE

Accurate diagnosis of FHP typically requires dedicated devices, such as clinical postural assessments or specialized imaging equipment, but their use is impractical for continuous, real-time monitoring in everyday settings. Therefore, developing an accessible, efficient method for regular posture assessment that can be easily integrated into daily activities, providing real-time feedback, and promoting corrective action, is necessary.

METHODS

The system sequentially estimates 2D and 3D human anatomical key points from a provided 2D image, using the Detectron2D and VideoPose3D algorithms, respectively. It then uses a graph convolutional network (GCN), explicitly crafted to analyze the spatial configuration and alignment of the upper body’s anatomical key points in 3D space. This GCN aims to implicitly learn the intricate relationship between the estimated 3D key points and the correct posture, specifically to identify FHP.

RESULTS

The test accuracy was 78.27% when inputs included all joints corresponding to the upper body key points. The GCN model demonstrated slightly superior balanced performance across classes with an <i>F</i><sub>1</sub>-score (macro) of 77.54%, compared to the baseline feedforward neural network (FFNN) model’s 75.88%. Specifically, the GCN model showed a more balanced precision and recall between the classes, suggesting its potential for better generalization in FHP detection across diverse postures. Meanwhile, the baseline FFNN model demonstrates a higher precision for FHP cases but at the cost of lower recall, indicating that while it is more accurate in confirming FHP when detected, it misses a significant number of actual FHP instances. This assertion is further substantiated by the examination of the latent feature space using t-distributed stochastic neighbor embedding, where the GCN model presented an isotropic distribution, unlike the FFNN model, which showed an anisotropic distribution.

CONCLUSIONS

Based on 2D image input using 3D human pose estimation joint inputs, it was found that it is possible to learn FHP-related features using the proposed GCN-based network to develop a posture correction system. We conclude the paper by addressing the limitations of our current system and proposing potential avenues for future work in this area.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3