Abstract
In order to study the stress state and stability of a spiral tube and actuator for controlled extension and retraction (STACER) during the launching process of a satellite, finite element software was applied to establish a finite element model of STACER via the explicit dynamics analysis method. The influence of top rod’s radius on the gathering or so called packaging process of STACER was analyzed. The effects of surface friction coefficient and acceleration on the stability were studied during the gathering process. It was found that the top rod radius directly affects the gathering load and the deformation around the rivet of the STACER. When the spring reel is gathered, the friction coefficient between contact surfaces, and the acceleration, work on the stability of STACER. The stability of STACER can be maintained by a friction coefficient with small fluctuations. An unstable state occurs after the STACER is gathered when the direction of acceleration is parallel to the axial direction of the rivet. A mechanical test on the STACER is conducted to verify the reliability and accuracy of the model. The force trend is similar between the finite element result and experimental result. This work will contribute to the theoretical development for designing the radius of the top rod of the spring reel, the surface friction coefficient of the STACER and the position of the spring reel during the launch process of satellites.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献